#### **Dynamic Group Link Prediction in Continuous-Time Interaction Network**

Shijie Luo, He Li\* and Jianbin Huang
Xidian University
sjluo@stu.xidian.edu.cn, {heli, jbhuang}@xidian.edu.cn

None

— IJCAI 2023





- 1.Introduction
- 2.Method
- 3. Experiments





### Introduction

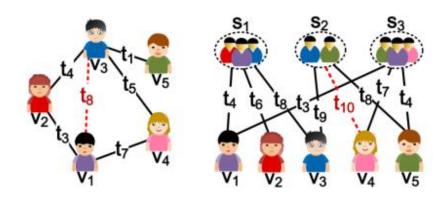



Figure 1: Difference between continuous-time link prediction and continuous-time group link prediction. (1) As shown in left part, in continuous-time link prediction, we predict the probability of an edge existing between individual  $v_1$  and  $v_3$  at future time  $t_8$ . (2) As shown in right part, in continuous-time group link prediction, we infer the possibility of generating a link between individual  $v_4$  and group  $s_2$  at future time  $t_{10}$ .

First, previous methods rarely discuss future links between individuals and groups, but tend to mine missing ones. The assumption that all members are connected to the group at the same time makes the fine-grained raw temporal information missing.

Second, individuals are assumed to be isolated from each other, which neglects the neighborhood information that laterally depicts dynamic link preferences.

Third, equal treatment of all group members leads to ignoring the diversity of members' importance in groups.

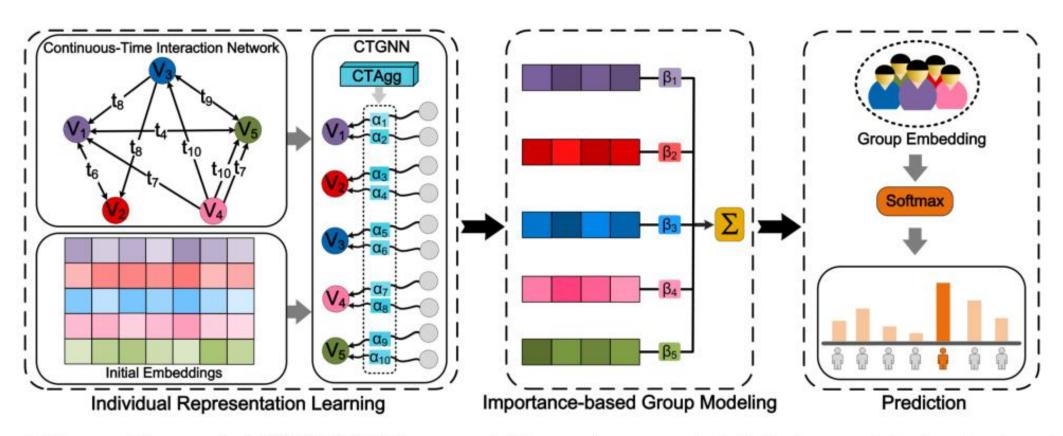



Figure 3: The overall framework of CTGLP is composed of three main components: individual representation learning, importance-based group modeling and prediction.

#### Method

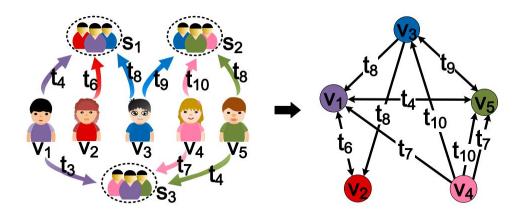
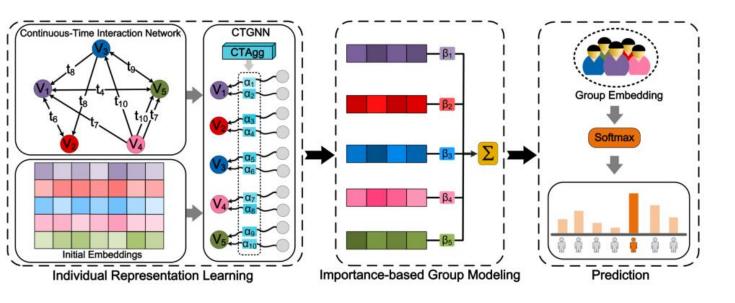



Figure 2: A toy example of the construction of a continuous-time interaction network.


$$G = (V, E^{T}, T) \quad e_{ij}^{t} \in E^{T} \quad t \in T$$

$$S = \{s_{1}, s_{2}, \dots, s_{M}\} \quad s_{i} = \{v_{i,1}^{t_{1}}, v_{i,2}^{t_{2}}, \dots, v_{i,k}^{t_{k}}\} \subseteq V$$

$$v_{i,k+1}^{t'} = \mathcal{F}(v_{i,1}^{t_{1}}, v_{i,2}^{t_{2}}, \dots, v_{i,k}^{t_{k}}), \qquad (1)$$

$$v_{i,k+1}^{t'} \in V \setminus s_{i} \quad t' > t$$

#### Method



$$\Gamma_{\mathcal{T}}(u) = \{(v, t) \mid e = (u, v, t) \in E^T \cap t < \mathcal{T}\}.$$
 (2)

$$Samp = \begin{cases} \Gamma_{\mathcal{T}}(u), & |\Gamma_{\mathcal{T}}(u)| \le \theta; \\ r_{\theta}(\Gamma_{\mathcal{T}}(u)), & |\Gamma_{\mathcal{T}}(u)| > \theta, \end{cases}$$
(3)

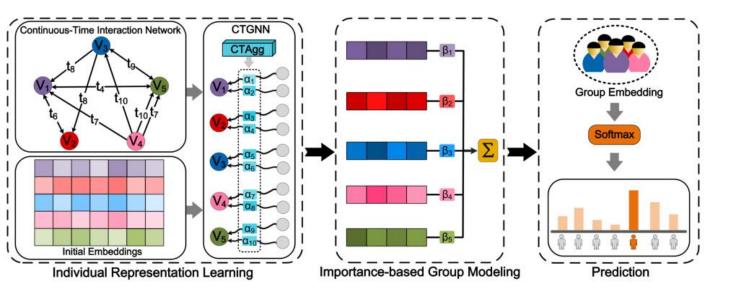
$$\hat{\mathcal{N}}_{\mathcal{T}}^{l}(u) = Samp_{l}\left(\Gamma_{\mathcal{T}_{l}}^{l}(\dots Samp_{1}(\Gamma_{\mathcal{T}_{1}}^{1}(u)))\right), \tag{4}$$

$$\mathcal{T}_{i+1} < \mathcal{T}_{i} \text{ for } 1 < i < l, \text{ and } \mathcal{T}_{1} = \mathcal{T}_{1}$$

$$\vec{\mathbf{n}}_{u}^{(l)} = AGG^{(l)}(\{\alpha_{uv}^{t} \cdot \vec{\mathbf{h}}_{v}^{(l-1)}, v \in \hat{\mathcal{N}}_{t}^{l}(u)\}),$$
 (5)

$$\vec{\mathbf{h}}_{u}^{(l)} = \sigma(\mathbf{W}^{(l)} \cdot \text{COM}(\vec{\mathbf{h}}_{u}^{(l-1)}, \vec{\mathbf{n}}_{u}^{(l)}) + \mathbf{w}^{(l)}), \quad (6)$$

$$\alpha_{uv}^{t} = \frac{\exp(t_{uv} - t)}{\sum_{v \in \hat{\mathcal{N}}_{c}^{l}(u) \cup u} \exp(t_{uv} - t)},\tag{7}$$


$$\vec{\mathbf{e}}_{u}^{(1)} = \sigma(\mathbf{U}^{(1)} \cdot \vec{\mathbf{h}}_{u} + \mathbf{u}^{(1)}),$$

$$\vec{\mathbf{e}}_{u}^{(2)} = \sigma(\mathbf{U}^{(2)} \cdot \vec{\mathbf{e}}_{u}^{(1)} + \mathbf{u}^{(2)}),$$

$$\cdots$$

$$\vec{\mathbf{z}}_{u} = \sigma(\mathbf{U}^{(j)} \cdot \vec{\mathbf{e}}_{u}^{(j-1)} + \mathbf{u}^{(j)}),$$
(8)

#### Method



$$\beta_{ik} = \frac{\frac{1}{\log(T - t_k)}}{\sum_{j=1}^{K} \frac{1}{\log(T - t_j)}},$$
(9)

$$\vec{\mathbf{p}}_i = \sum_{j=1}^K \beta_{ij} \cdot \vec{\mathbf{z}}_{i,j}, \tag{10}$$

$$\vec{\mathbf{m}}_i = \mathbf{C}_2 \cdot \sigma(\mathbf{C}_1 \cdot \vec{\mathbf{p}}_i + \mathbf{c}), \tag{11}$$

$$\vec{\mathbf{q}}_{i}^{(1)} = \sigma(\mathbf{G}^{(1)} \cdot \vec{\mathbf{m}}_{i} + \mathbf{g}^{(1)}),$$

$$\cdots$$

$$\vec{\mathbf{q}}_{i}^{(k)} = \sigma(\mathbf{G}^{(k)} \cdot \vec{\mathbf{q}}_{i}^{(k-1)} + \mathbf{g}^{(k)}),$$
(12)

$$\mathbf{P}_i = \operatorname{Softmax}(\mathbf{Q} \cdot \vec{\mathbf{q}}_i^{(k)} + \mathbf{q}) \tag{13}$$

$$\mathcal{L} = \frac{1}{M} \sum_{i=1}^{M} \sum_{j=1}^{N} y_{ij} \log (P_{ij})$$
 (14)

| Datasets           | Nodes        | Edges             | Groups       | Unseen*     |
|--------------------|--------------|-------------------|--------------|-------------|
| ML100K<br>CiaoDVD  | 755<br>8 714 | 59 118<br>165 598 | 590<br>4 040 | 42<br>1 195 |
| ML25M              | 16 065       | 1 048 836         | 18 882       | 1 578       |
| $ML100K_{\rm w/o}$ | 650          | 22 683            | 510          | 0           |
| $CiaoDVD_{w/o}$    | 5 766        | 85 562            | 3 341        | 0           |
| $ML25M_{\rm w/o}$  | 9 998        | 491 704           | 16 494       | 0           |

<sup>\*</sup> The value indicates the number of nodes that are not presented during training.

Table 1: Statistics of two versions of the three datasets. Note that the subscript w/o denotes the dataset without unseen nodes.

| 8       |              |          |                |           |                |          |                |
|---------|--------------|----------|----------------|-----------|----------------|----------|----------------|
|         | Method       | HR@K(%)  |                | NDCG@K(%) |                | MRR@K(%) |                |
|         |              | K=10     | K=20           | K=10      | K=20           | K=10     | K=20           |
| ML100K  | LSTM         | 15.9     | 22.7           | 8.7       | 10.4           | 6.6      | 7.0            |
|         | CVAE         | 28.8±1.5 | 39.0±1.7       | 16.1±1.4  | 18.6±1.4       | 12.3±2.2 | $13.0 \pm 2.3$ |
|         | CVAEH        | 23.7±1.9 | 32.2±1.0       | 12.3±1.1  | 14.5±0.8       | 8.9±1.3  | $9.5 \pm 1.3$  |
|         | MLP          | 14.4±1.1 | 26.1±1.2       | 6.3±1.4   | $9.3 \pm 1.2$  | 4.1±1.2  | $4.7 \pm 1.4$  |
|         | <b>GSAGE</b> | 27.1±0.7 | $35.6 \pm 0.4$ | 16.2±0.4  | $18.3 \pm 0.4$ | 12.9±0.6 | $13.5 \pm 0.5$ |
|         | CTGLP        | 30.5±0.9 | 42.4±0.5       | 21.5±0.9  | 24.4±0.8       | 18.6±0.7 | 19.4±0.7       |
| CiaoDVD | LSTM         | 10.6     | 14.7           | 6.0       | 7.0            | 4.5      | 4.8            |
|         | CVAE         | 21.6±0.7 | 27.1±0.8       | 11.9±0.5  | $13.4 \pm 0.3$ | 9.0±0.4  | 9.4±0.3        |
|         | CVAEH        | 16.1±0.8 | 23.5±1.9       | 10.0±1.1  | 11.9±1.3       | 8.2±1.1  | $8.7 \pm 1.2$  |
|         | MLP          | 15.2±1.5 | $20.5 \pm 2.6$ | 7.2±0.6   | $8.6 \pm 0.8$  | 4.8±0.5  | $5.2 \pm 0.4$  |
|         | GSAGE        | 17.6±0.8 | 24.8±0.8       | 8.8±0.7   | $10.6 \pm 0.5$ | 6.1±0.5  | $6.5 \pm 0.6$  |
|         | CTGLP        | 20.8±0.6 | 28.7±0.7       | 11.7±0.4  | $13.7 \pm 0.2$ | 8.8±0.7  | $9.4 \pm 0.8$  |
| ML25M   | LSTM         | 20.5     | 25.3           | 13.9      | 15.1           | 11.9     | 12.2           |
|         | CVAE         | 22.6±2.1 | $26.9 \pm 2.1$ | 16.6±1.6  | 17.7±1.7       | 14.7±1.5 | 15.0±1.5       |
|         | CVAEH        | 19.4±0.8 | $23.4 \pm 0.6$ | 14.3±1.1  | $15.3 \pm 0.8$ | 12.7±1.0 | $12.9 \pm 0.8$ |
|         | MLP          | 19.6±1.4 | $23.4 \pm 3.1$ | 14.4±1.5  | $15.4 \pm 2.0$ | 12.8±1.6 | 13.1±1.8       |
|         | <b>GSAGE</b> | 27.1±0.4 | 31.9±0.6       | 17.1±0.3  | $18.3 \pm 0.4$ | 14.0±0.2 | 14.3±0.3       |
|         | CTGLP        | 30.0±0.7 | 35.8±0.8       | 19.6±0.4  | 21.0±0.5       | 16.3±0.6 | 16.7±0.6       |

Table 2: Performance of various methods on datasets *with* unseen nodes. Items with the highest values are marked in **bold**.

| a .                    | Modbod | HR@K(%)  |                | NDCG@K(%) |                | MRR@K(%) |                |
|------------------------|--------|----------|----------------|-----------|----------------|----------|----------------|
|                        | Method | K=10     | K=20           | K = 10    | K=20           | K=10     | K=20           |
| $ m ML100K_{w/o}$      | AA     | 8.8      | 18.7           | 4.3       | 6.8            | 3.1      | 3.8            |
|                        | CN     | 7.7      | 18.7           | 3.5       | 6.3            | 2.2      | 3.0            |
|                        | DW     | 0.0      | 2.0            | 0.0       | 0.5            | 0.0      | 0.1            |
|                        | n2v    | 0.0      | 4.0            | 0.0       | 1.0            | 0.0      | 0.3            |
|                        | HTNE   | 0.0      | 8.0            | 0.0       | 2.0            | 0.0      | 0.5            |
|                        | LSTM   | 4.7      | 7.0            | 2.0       | 2.6            | 1.2      | 1.3            |
|                        | CVAE   | 30.0±1.6 | 38.0±1.1       | 17.7±1.1  | 19.6±1.1       | 13.8±1.3 | $14.3 \pm 1.3$ |
|                        | CVAEH  | 24.0±3.0 | $28.0 \pm 2.3$ | 12.2±1.9  | 13.1±1.8       | 8.4±1.9  | $8.7 \pm 1.9$  |
|                        | CTGLP  | 28.0±1.0 | 34.0±0.6       | 22.1±0.9  | 23.5±1.0       | 20.3±0.8 | 20.7±0.8       |
| CiaoDVD <sub>w/o</sub> | AA     | 20.4     | 28.7           | 12.6      | 14.8           | 10.3     | 10.9           |
|                        | CN     | 19.3     | 30.1           | 12.1      | 14.8           | 9.9      | 10.6           |
|                        | DW     | 0.9      | 1.9            | 0.3       | 0.6            | 0.2      | 0.3            |
|                        | n2v    | 0.5      | 1.0            | 0.2       | 0.4            | 0.1      | 0.2            |
|                        | HTNE   | 0.5      | 2.0            | 0.2       | 0.5            | 0.1      | 0.2            |
|                        | LSTM   | 13.0     | 16.6           | 8.2       | 9.1            | 6.7      | 7.0            |
| Ü                      | CVAE   | 22.1±1.7 | 26.8±1.0       | 12.6±1.1  | 13.8±0.9       | 9.7±0.9  | $10.0 \pm 0.9$ |
|                        | CVAEH  | 22.5±0.9 | 27.7±1.0       | 13.1±0.7  | 14.4±0.6       | 10.2±0.6 | $10.5 \pm 0.6$ |
|                        | CTGLP  | 25.5±0.9 | $30.7 \pm 1.0$ | 17.0±0.5  | 18.3±0.4       | 14.3±0.9 | $14.7 \pm 1.0$ |
| 85                     | AA     | 42.5     | 45.1           | 31.8      | 32.4           | 28.5     | 28.7           |
|                        | CN     | 42.7     | 45             | 31.9      | 32.5           | 28.6     | 28.7           |
| 0/                     | DW     | 2.1      | 5.4            | 0.7       | 1.5            | 0.3      | 0.5            |
| $ML25M_{\rm w/o}$      | n2v    | 1.3      | 3.5            | 0.5       | 1.0            | 0.2      | 0.4            |
|                        | HTNE   | 1.3      | 3.1            | 0.5       | 0.9            | 0.2      | 0.3            |
|                        | LSTM   | 27.3     | 32.6           | 19.8      | 21.1           | 17.5     | 17.8           |
|                        | CVAE   | 27.8±0.5 | 34.2±0.6       | 19.3±0.4  | $20.9 \pm 0.7$ | 16.6±0.7 | $17.1 \pm 0.5$ |
|                        | CVAEH  | 27.2±0.4 | 32.1±0.7       | 19.3±0.5  | $20.6 \pm 0.4$ | 16.9±0.4 | $17.2 \pm 0.4$ |
|                        | CTGLP  | 45.8±1.1 | 54.4±0.9       | 28.3±0.8  | 30.5±1.0       | 22.9±1.1 | 23.5±1.3       |

Table 3: Performance of various methods on datasets *without* unseen nodes. Items with the highest values are marked in **bold**.

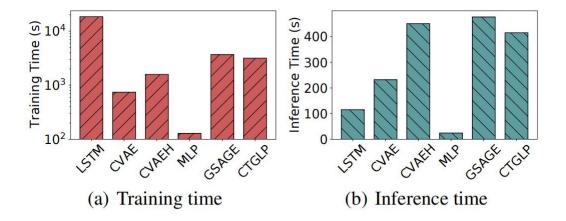



Figure 4: Comparison of training time and inference time of six methods on ML25M.

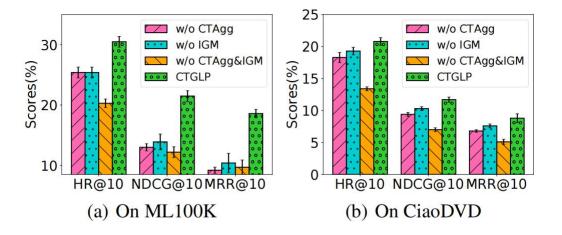



Figure 5: Impact of various components on performance under ML100K and CiaoDVD. IGM denotes the importance-based group modeling.

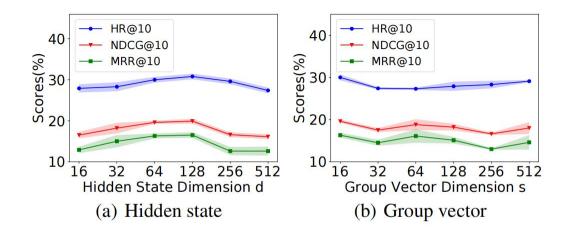



Figure 6: Impact of embedding dimension on method performance under ML25M.

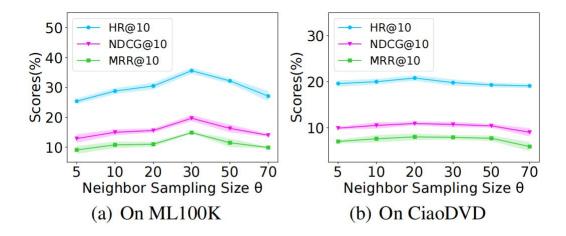



Figure 7: Impact of embedding dimension on method performance on datasets ML100K and CiaoDVD.

# Thank you!